Background and objectives: The aim of this retrospective study was to evaluate the effects of alcohol consumption on oxidative stress. Materials and Methods: The study was conducted by analyzing the increase in lipid peroxidation, the reduction of antioxidant defenses and the alteration of the oxidation/antioxidant balance after the administration of ethanol in 25% aqueous solution (v/v) at a concentration of 0.76 g/kg of body weight daily in two doses for 3 days. The changes in oxidative stress indices were investigated by standard methods previously described. Results: Ethanol administration has determined a significant increase in plasma levels of lipid hydroperoxide (LOOH), malonilaldehyde (MDA) and oxidized glutathione (GSSH), and a decrease in total antioxidant capacity (TAC), reduced glutathione (GSH) and GSH/GSSH ratio. Conclusions: In the proposed experimental condition, the excessive and repeated consumption of ethanol causes oxidative damage, as shown by the increase in lipid peroxidation, the reduction of antioxidant defenses and the alteration of the oxidation/antioxidant balance, which, at least in part, are responsible for the harmful effects of excess ethanol.
Effects of Alcohol Consumption on Oxidative Stress in a Sample of Patients Recruited in a Dietary Center in a Southern University Hospital: A Retrospective Study
Daniela Metro;Francesco Fedele;Martina Buda;Luigi Manasseri;Angelo Quartarone;Lilla Bonanno
2022-01-01
Abstract
Background and objectives: The aim of this retrospective study was to evaluate the effects of alcohol consumption on oxidative stress. Materials and Methods: The study was conducted by analyzing the increase in lipid peroxidation, the reduction of antioxidant defenses and the alteration of the oxidation/antioxidant balance after the administration of ethanol in 25% aqueous solution (v/v) at a concentration of 0.76 g/kg of body weight daily in two doses for 3 days. The changes in oxidative stress indices were investigated by standard methods previously described. Results: Ethanol administration has determined a significant increase in plasma levels of lipid hydroperoxide (LOOH), malonilaldehyde (MDA) and oxidized glutathione (GSSH), and a decrease in total antioxidant capacity (TAC), reduced glutathione (GSH) and GSH/GSSH ratio. Conclusions: In the proposed experimental condition, the excessive and repeated consumption of ethanol causes oxidative damage, as shown by the increase in lipid peroxidation, the reduction of antioxidant defenses and the alteration of the oxidation/antioxidant balance, which, at least in part, are responsible for the harmful effects of excess ethanol.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.