This work reports on the structural characteristics of the respiratory gas bladder of the osteoglossiform fish Heterotis niloticus. The bladder‐vertebrae relationships are also analyzed. A slit‐shaped orifice in the mediodorsal pharyngeal wall is surrounded by a muscle sphincter and serves as a glottis‐like opening to the gas bladder. The dorsolateral internal surface of the gas bladder is lined by a parenchyma of highly vascularized trabeculae and septa displaying an alveolar‐like structure. The trabeculae contain, in addition to vessels, numerous eosinophils probably involved in immune responses. The air spaces are endowed with a thin exchange barrier indicating a good potential for respiratory gas exchange. The ventral wall of the gas bladder is a well‐vascularized membrane that exhibits an exchange barrier in the luminal face and an inner structure dominated by the presence of a layer of richly innervated smooth muscle. This is suggestive of an autonomous adjustability of the gas bladder ventral wall. The trunk vertebrae show large transverse processes (parapophyses) and numerous surface openings that lead into intravertebral spaces that become invaded by the bladder parenchyma. Curiously, the caudal vertebrae show a regular teleost morphology with neural and hemal arches, but have similar surface openings and intravertebral pneumatic spaces. The African Arowana hence rivals the freshwater butterfly fish Pantodon in its exceptional role of displaying postcranial skeletal pneumaticity outside of Archosauria. The possible significance of these findings is discussed.

The gas bladder of Heterotis niloticus (Cuvier, 1829)

Alessio Alesci
Secondo
;
Maria C. Guerrera
Penultimo
;
Giacomo Zaccone
Ultimo
2023-01-01

Abstract

This work reports on the structural characteristics of the respiratory gas bladder of the osteoglossiform fish Heterotis niloticus. The bladder‐vertebrae relationships are also analyzed. A slit‐shaped orifice in the mediodorsal pharyngeal wall is surrounded by a muscle sphincter and serves as a glottis‐like opening to the gas bladder. The dorsolateral internal surface of the gas bladder is lined by a parenchyma of highly vascularized trabeculae and septa displaying an alveolar‐like structure. The trabeculae contain, in addition to vessels, numerous eosinophils probably involved in immune responses. The air spaces are endowed with a thin exchange barrier indicating a good potential for respiratory gas exchange. The ventral wall of the gas bladder is a well‐vascularized membrane that exhibits an exchange barrier in the luminal face and an inner structure dominated by the presence of a layer of richly innervated smooth muscle. This is suggestive of an autonomous adjustability of the gas bladder ventral wall. The trunk vertebrae show large transverse processes (parapophyses) and numerous surface openings that lead into intravertebral spaces that become invaded by the bladder parenchyma. Curiously, the caudal vertebrae show a regular teleost morphology with neural and hemal arches, but have similar surface openings and intravertebral pneumatic spaces. The African Arowana hence rivals the freshwater butterfly fish Pantodon in its exceptional role of displaying postcranial skeletal pneumaticity outside of Archosauria. The possible significance of these findings is discussed.
2023
File in questo prodotto:
File Dimensione Formato  
2023.The gas bladder of Heterotis niloticus Cuvier 1829.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3257827
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact