The enhancement of the actual low yields is the most important challenge regarding organic farming management. In this view, a valid tool may arise by the improvement of fertilization management and efficiency. In this regard, arbuscular mycorrhizal fungi (AMF) can play an important role, especially in low fertility soils such as calcareous ones, through a better nutrient uptake and by alleviating abiotic stresses. A replicated-space experiment was carried out to investigate the role of mycorrhizal-based inoculants combined with full or halved fertilizer doses on yield and physiological traits of three early potato cultivars organically grown in highly calcareous and alkaline soils. The results indicate that AMF symbiosis ameliorated, in comparison to the not-inoculated plants, the potato tolerance to limestone stress by enhancing the potential quantum efficiency of photosystem II (Fv/F0) and plant gas-exchange parameters (photosynthesis rate and stomatal conductance). Moreover, a significant improvement of marketable yield (+25%) was observed, mainly due to an increase of the number of tubers plant−1 (+21%) and, to a lesser extent, of average tuber weight (+10%). The AMF efficiency was higher applying halved fertilizer doses and in the location where soil conditions were unfavourable for potato growth. Moreover, the qRT-PCR highlighted that AMF colonization was similar in each location, demonstrating their tolerance to limestone, alkalinity and P stresses. These findings outlined that AMF are good candidate to bio-ameliorate calcareous soils and are very useful for improving potato yields under organic farming, limiting external fertilizers supply and environmental pollution.

Productive and physiological response of organic potato grown under highly calcareous soils to fertilization and mycorrhization management

Aurelio Scavo
;
2020-01-01

Abstract

The enhancement of the actual low yields is the most important challenge regarding organic farming management. In this view, a valid tool may arise by the improvement of fertilization management and efficiency. In this regard, arbuscular mycorrhizal fungi (AMF) can play an important role, especially in low fertility soils such as calcareous ones, through a better nutrient uptake and by alleviating abiotic stresses. A replicated-space experiment was carried out to investigate the role of mycorrhizal-based inoculants combined with full or halved fertilizer doses on yield and physiological traits of three early potato cultivars organically grown in highly calcareous and alkaline soils. The results indicate that AMF symbiosis ameliorated, in comparison to the not-inoculated plants, the potato tolerance to limestone stress by enhancing the potential quantum efficiency of photosystem II (Fv/F0) and plant gas-exchange parameters (photosynthesis rate and stomatal conductance). Moreover, a significant improvement of marketable yield (+25%) was observed, mainly due to an increase of the number of tubers plant−1 (+21%) and, to a lesser extent, of average tuber weight (+10%). The AMF efficiency was higher applying halved fertilizer doses and in the location where soil conditions were unfavourable for potato growth. Moreover, the qRT-PCR highlighted that AMF colonization was similar in each location, demonstrating their tolerance to limestone, alkalinity and P stresses. These findings outlined that AMF are good candidate to bio-ameliorate calcareous soils and are very useful for improving potato yields under organic farming, limiting external fertilizers supply and environmental pollution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3294815
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact