Purpose To kinematically and biomechanically compare 4 different types of tibial tunnel management in single-stage anterior cruciate ligament (ACL) revision reconstruction with the control: primary ACL reconstruction using a robotic-based knee testing setup. Methods Porcine knees and flexor tendons were used. One hundred specimens were randomly assigned to 5 testing groups: (1) open tibial tunnel, (2) bone plug technique, (3) biodegradable interference screw, (4) dilatation technique, and (5) primary ACL reconstruction. A robotic/universal force-moment sensor testing system was used to simulate the KT-1000 (MEDmetric, San Diego, CA) and pivot-shift tests. Cyclic loading and load-to-failure testing were performed. Results Anterior tibial translation increased significantly with all of the techniques compared with the intact ACL (P <.05). In the simulated KT-1000 test, groups 2 and 3 achieved results equal to those of primary ACL reconstruction (P >.05). The open tunnel and dilated tunnel techniques showed significantly greater anterior tibial translation (P <.05). The results of the simulated pivot-shift test were in accordance with those of the KT-1000 test. No significant differences could be observed regarding stiffness or maximum load to failure. However, elongation was significantly lower in the primary ACL reconstruction group compared with groups 1 and 3 (P =.02 and P =.03, respectively). Conclusions Filling an incomplete and incorrect tibial tunnel with a press-fit bone plug or a biodegradable interference screw in a standardized laboratory situation provided initial biomechanical properties and knee stability comparable with those of primary ACL reconstruction. In contrast, the dilatation technique or leaving the malplaced tunnel open did not restore knee kinematics adequately in this model. Backup extracortical fixation should be considered because the load to failure depends on the extracortical fixation when an undersized interference screw is used for aperture fixation. Clinical Relevance Our biomechanical results could help orthopaedic surgeons to optimize the results of primary ACL revision with incomplete, incorrect tunnel placement.

Influence of different tibial fixation techniques on initial stability in single-stage anterior cruciate ligament revision with confluent tibial tunnels: A biomechanical laboratory study

Zampogna B.;
2016-01-01

Abstract

Purpose To kinematically and biomechanically compare 4 different types of tibial tunnel management in single-stage anterior cruciate ligament (ACL) revision reconstruction with the control: primary ACL reconstruction using a robotic-based knee testing setup. Methods Porcine knees and flexor tendons were used. One hundred specimens were randomly assigned to 5 testing groups: (1) open tibial tunnel, (2) bone plug technique, (3) biodegradable interference screw, (4) dilatation technique, and (5) primary ACL reconstruction. A robotic/universal force-moment sensor testing system was used to simulate the KT-1000 (MEDmetric, San Diego, CA) and pivot-shift tests. Cyclic loading and load-to-failure testing were performed. Results Anterior tibial translation increased significantly with all of the techniques compared with the intact ACL (P <.05). In the simulated KT-1000 test, groups 2 and 3 achieved results equal to those of primary ACL reconstruction (P >.05). The open tunnel and dilated tunnel techniques showed significantly greater anterior tibial translation (P <.05). The results of the simulated pivot-shift test were in accordance with those of the KT-1000 test. No significant differences could be observed regarding stiffness or maximum load to failure. However, elongation was significantly lower in the primary ACL reconstruction group compared with groups 1 and 3 (P =.02 and P =.03, respectively). Conclusions Filling an incomplete and incorrect tibial tunnel with a press-fit bone plug or a biodegradable interference screw in a standardized laboratory situation provided initial biomechanical properties and knee stability comparable with those of primary ACL reconstruction. In contrast, the dilatation technique or leaving the malplaced tunnel open did not restore knee kinematics adequately in this model. Backup extracortical fixation should be considered because the load to failure depends on the extracortical fixation when an undersized interference screw is used for aperture fixation. Clinical Relevance Our biomechanical results could help orthopaedic surgeons to optimize the results of primary ACL revision with incomplete, incorrect tunnel placement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3296964
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact