Background: Multiple sclerosis (MS) is characterized as a neurodegenerative condition possibly triggered by autoimmune mechanisms, impacting the entire central nervous system. In this context, neurorehabilitation plays a crucial role in every phase of the disease, aiming to restore and preserve motor functions in MS patients. In particular, robotic gait training (RGT) allows intensive, repetitive, and task-oriented training, which is pivotal in boosting neuroplastic processes. Thus, the primary aim of our study is to evaluate the effectiveness of innovative robotic gait training, using the G-EO system, on gait, functional abilities, and quality of life (QoL) in patients affected by MS. Secondly, we evaluated the effect of the robotic rehabilitation on lower-limb motor functioning, balance, sensation, and joint functioning. Methods: The study involved twenty MS patients, divided into two groups with comparable medical characteristics and rehabilitation training duration. The experimental group (EG) underwent robotic gait training with the G-EO system (n. 10), while the control group (CG) received traditional rehabilitation training (n. 10). Results: Both groups exhibited improvements in disability level (Functional Independence Measure), 10 m walking distance (10MWT), gait, and balance performance (Functional Ambulation Classification, Tinetti Scale). However, the EG demonstrated a more significant improvement. The G-EO system notably reduced spasticity in the lower limbs (Modified Ashworth Scale) exclusively in the EG. Discussion: This study suggests that the G-EO system could be a valuable tool for enhancing gait functions, including lower-limb movements, functional abilities, and QoL in individuals with MS.

Can Robotic Gait Training with End Effectors Improve Lower-Limb Functions in Patients Affected by Multiple Sclerosis? Results from a Retrospective Case–Control Study

Quartarone, Angelo;Alibrandi, Angela
Formal Analysis
;
2024-01-01

Abstract

Background: Multiple sclerosis (MS) is characterized as a neurodegenerative condition possibly triggered by autoimmune mechanisms, impacting the entire central nervous system. In this context, neurorehabilitation plays a crucial role in every phase of the disease, aiming to restore and preserve motor functions in MS patients. In particular, robotic gait training (RGT) allows intensive, repetitive, and task-oriented training, which is pivotal in boosting neuroplastic processes. Thus, the primary aim of our study is to evaluate the effectiveness of innovative robotic gait training, using the G-EO system, on gait, functional abilities, and quality of life (QoL) in patients affected by MS. Secondly, we evaluated the effect of the robotic rehabilitation on lower-limb motor functioning, balance, sensation, and joint functioning. Methods: The study involved twenty MS patients, divided into two groups with comparable medical characteristics and rehabilitation training duration. The experimental group (EG) underwent robotic gait training with the G-EO system (n. 10), while the control group (CG) received traditional rehabilitation training (n. 10). Results: Both groups exhibited improvements in disability level (Functional Independence Measure), 10 m walking distance (10MWT), gait, and balance performance (Functional Ambulation Classification, Tinetti Scale). However, the EG demonstrated a more significant improvement. The G-EO system notably reduced spasticity in the lower limbs (Modified Ashworth Scale) exclusively in the EG. Discussion: This study suggests that the G-EO system could be a valuable tool for enhancing gait functions, including lower-limb movements, functional abilities, and QoL in individuals with MS.
2024
File in questo prodotto:
File Dimensione Formato  
jcm-Bonanno et al, 2024.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3297869
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact