This article explores the complex relationship between genetics and cognition, specifically examining the impact of genetic variants, particularly single nucleotide polymorphisms (SNPs), on cognitive functions and the development of neuropsychiatric disorders. Focusing on neurotransmitter regulation within the prefrontal cortex's dopaminergic circuits, this study emphasizes the role of genes like COMT, PRODH, and DRD in shaping executive functions and influencing conditions such as ADHD and schizophrenia. Additionally, it explores the significance of genetic factors in neurodevelopmental disorders, emphasizing the need for early identification to guide appropriate therapeutic interventions. This article also investigates polymorphisms in the transsulfuration pathway, revealing their association with cognitive impairment diseases. Computational analyses, including machine learning algorithms, are highlighted for their potential in predicting symptom severity in ADHD based on genetic variations. In conclusion, this article underscores the intricate interplay of genetic and environmental factors in shaping cognitive outcomes, providing valuable insights for tailored treatments and a more comprehensive understanding of neuropsychiatric conditions.

The Impact of Genetics on Cognition: Insights into Cognitive Disorders and Single Nucleotide Polymorphisms

Spoto G;Di Rosa G;Nicotera AG.
2024-01-01

Abstract

This article explores the complex relationship between genetics and cognition, specifically examining the impact of genetic variants, particularly single nucleotide polymorphisms (SNPs), on cognitive functions and the development of neuropsychiatric disorders. Focusing on neurotransmitter regulation within the prefrontal cortex's dopaminergic circuits, this study emphasizes the role of genes like COMT, PRODH, and DRD in shaping executive functions and influencing conditions such as ADHD and schizophrenia. Additionally, it explores the significance of genetic factors in neurodevelopmental disorders, emphasizing the need for early identification to guide appropriate therapeutic interventions. This article also investigates polymorphisms in the transsulfuration pathway, revealing their association with cognitive impairment diseases. Computational analyses, including machine learning algorithms, are highlighted for their potential in predicting symptom severity in ADHD based on genetic variations. In conclusion, this article underscores the intricate interplay of genetic and environmental factors in shaping cognitive outcomes, providing valuable insights for tailored treatments and a more comprehensive understanding of neuropsychiatric conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3300392
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact