Gut epithelial barrier perturbation leads to leaky gut syndrome and permeation of substances activating immune response. Polyphenols can improve intestinal barrier function and represent candidates for preventing development of leaky gut. Herein, we evaluated in vitro the molecular mechanisms involved in the protective effects of a polyphenol-rich extract from leaves of Cynara cardunculus L. (CCLE) on intestinal barrier function and integrity on Caco-2 human epithelial cells. Treatment with CCLE from seeding until complete differentiation improved intestinal function by increasing trans-epithelial electrical resistance (TEER), reducing paracellular permeability to fluorescein, and promoting faster recovery of tight junctions (TJ) assembly in the Ca2+ switch assay. CCLE stimulated epithelial cell differentiation inducing alkaline phosphatase activity and TJ proteins. These CCLE-induced effects were attributed to activation of AMP-activated protein kinase (AMPK) pathway. Our data support the use of Cynara cardunculus L. leaves, an agricultural co-product rich in bioactive polyphenols, for the health of intestinal epithelium.

Intestinal epithelial differentiation and barrier function is promoted in vitro by a Cynara cardunculus L. leaf extract through AMPK pathway activation

Muscara, Claudia
Co-primo
;
Speciale, Antonio
Co-primo
;
Molonia, Maria Sofia
;
Salamone, Federica Lina;Saija, Antonella
Penultimo
;
Cimino, Francesco
Ultimo
2024-01-01

Abstract

Gut epithelial barrier perturbation leads to leaky gut syndrome and permeation of substances activating immune response. Polyphenols can improve intestinal barrier function and represent candidates for preventing development of leaky gut. Herein, we evaluated in vitro the molecular mechanisms involved in the protective effects of a polyphenol-rich extract from leaves of Cynara cardunculus L. (CCLE) on intestinal barrier function and integrity on Caco-2 human epithelial cells. Treatment with CCLE from seeding until complete differentiation improved intestinal function by increasing trans-epithelial electrical resistance (TEER), reducing paracellular permeability to fluorescein, and promoting faster recovery of tight junctions (TJ) assembly in the Ca2+ switch assay. CCLE stimulated epithelial cell differentiation inducing alkaline phosphatase activity and TJ proteins. These CCLE-induced effects were attributed to activation of AMP-activated protein kinase (AMPK) pathway. Our data support the use of Cynara cardunculus L. leaves, an agricultural co-product rich in bioactive polyphenols, for the health of intestinal epithelium.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3304989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact