: Nuclear magnetic resonance (NMR) metabolomic analysis was applied to investigate the differences within nineteen Sicilian Nocellara del Belice monovarietal extra virgin olive oils (EVOOs), grown in two zones that are different in altitude and soil composition. Several classes of endogenous olive oil metabolites were quantified through a nuclear magnetic resonance (NMR) three-experiment protocol coupled with a yet-developed data-processing called MARA-NMR (Multiple Assignment Recovered Analysis by Nuclear Magnetic Resonance). This method, taking around one-hour of experimental time per sample, faces the possible quantification of different class of compounds at different concentration ranges, which would require at least three alternative traditional methods. NMR results were compared with the data of traditional analytical methods to quantify free fatty acidity (FFA), fatty acid methyl esters (FAMEs), and total phenol content. The presented NMR methodology is compared with traditional analytical practices, and its consistency is also tested through slightly different data treatment. Despite the rich literature about the NMR of EVOOs, the paper points out that there are still several advances potentially improving this general analysis and overcoming the other cumbersome and multi-device analytical strategies. Monovarietal EVOO's composition is mainly affected by pedoclimatic conditions, in turn relying upon the nutritional properties, quality, and authenticity. Data collection, analysis, and statistical processing are discussed, touching on the important issues related to the climate changes in Sicily and to the specific influence of pedoclimatic conditions.

Comparison between Traditional and Novel NMR Methods for the Analysis of Sicilian Monovarietal Extra Virgin Olive Oils: Metabolic Profile Is Influenced by Micro-Pedoclimatic Zones

Rotondo, Archimede
Primo
Project Administration
;
Bartolomeo, Giovanni
Secondo
Validation
;
La Torre, Giovanna Loredana
Conceptualization
;
Pellicane, Giuseppe
Writing – Review & Editing
;
2024-01-01

Abstract

: Nuclear magnetic resonance (NMR) metabolomic analysis was applied to investigate the differences within nineteen Sicilian Nocellara del Belice monovarietal extra virgin olive oils (EVOOs), grown in two zones that are different in altitude and soil composition. Several classes of endogenous olive oil metabolites were quantified through a nuclear magnetic resonance (NMR) three-experiment protocol coupled with a yet-developed data-processing called MARA-NMR (Multiple Assignment Recovered Analysis by Nuclear Magnetic Resonance). This method, taking around one-hour of experimental time per sample, faces the possible quantification of different class of compounds at different concentration ranges, which would require at least three alternative traditional methods. NMR results were compared with the data of traditional analytical methods to quantify free fatty acidity (FFA), fatty acid methyl esters (FAMEs), and total phenol content. The presented NMR methodology is compared with traditional analytical practices, and its consistency is also tested through slightly different data treatment. Despite the rich literature about the NMR of EVOOs, the paper points out that there are still several advances potentially improving this general analysis and overcoming the other cumbersome and multi-device analytical strategies. Monovarietal EVOO's composition is mainly affected by pedoclimatic conditions, in turn relying upon the nutritional properties, quality, and authenticity. Data collection, analysis, and statistical processing are discussed, touching on the important issues related to the climate changes in Sicily and to the specific influence of pedoclimatic conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3317008
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact