Background: The management of diaphyseal and distal tibial defects and non-unions is a significant challenge. Traditional treatments, such as distraction osteogenesis or Masquelet, are characterized by extended treatment times and elevated complication rates. Innovative approaches, such as customized 3D-printed titanium implants, are often required to restore structural integrity and function. This systematic review aimed to analyze the results achieved to date with this technique. Methods: A systematic review of the literature written in English was performed in PubMed, Scopus, and Cochrane to identify all cases of tibial non-unions or defects treated with customized 3D-printed titanium implants, excluding defects from tumor resection. Studies with a minimum of 12 months of follow-up were included. Results: The causes of treatment were infection in 10 patients, non-union in 6 patients, and severe bone loss after trauma in 3 cases. The size of the defect ranged from 3 to 8.5 cm. Osteointegration was 100% in all studies. The mean time to union was 5.3 months. The complication rate was 16%. Conclusions: Good results were reported in most patients. However, the data are insufficient to define the role of customized 3D-printed implants compared to traditional techniques. Further studies comparing them are needed to draw explicit guidelines.
Custom-Made 3D-Printed Titanium Implants for Managing Segmental Distal Tibial Bone Defects: A Systematic Literature Review
Zampogna, Biagio;Marrara, Giovanni;Siracusano, Lorenza;Larizza, Leone;Calaciura, Salvatore;Sanzarello, Ilaria;Leonetti, Danilo
2025-01-01
Abstract
Background: The management of diaphyseal and distal tibial defects and non-unions is a significant challenge. Traditional treatments, such as distraction osteogenesis or Masquelet, are characterized by extended treatment times and elevated complication rates. Innovative approaches, such as customized 3D-printed titanium implants, are often required to restore structural integrity and function. This systematic review aimed to analyze the results achieved to date with this technique. Methods: A systematic review of the literature written in English was performed in PubMed, Scopus, and Cochrane to identify all cases of tibial non-unions or defects treated with customized 3D-printed titanium implants, excluding defects from tumor resection. Studies with a minimum of 12 months of follow-up were included. Results: The causes of treatment were infection in 10 patients, non-union in 6 patients, and severe bone loss after trauma in 3 cases. The size of the defect ranged from 3 to 8.5 cm. Osteointegration was 100% in all studies. The mean time to union was 5.3 months. The complication rate was 16%. Conclusions: Good results were reported in most patients. However, the data are insufficient to define the role of customized 3D-printed implants compared to traditional techniques. Further studies comparing them are needed to draw explicit guidelines.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


