Natural phenolic antioxidants were separated using comprehensive 2D HPLC on a Purospher Star RP-18e column in the first dimension and on two parallel Zirconia Carbon columns working in alternating cycles in the second dimension. The combination of the two columns provides great differences in separation selectivity in each dimension and an almost orthogonal 2D system. Temperature and solvent gradients were compared for the separation of the first dimension fraction in the stop-flow heart-cutting 2D setup. Temperature gradients provide shorter separation times in comparison with solvent gradients. However, the time required for post-run column equilibration is too long for comprehensive LCxLC. High-temperature isocratic separation was employed in the second dimension of the comprehensive setup, allowing improvement of the fraction transfer frequency between the two dimensions and shorter 2D separation time in comparison to the earlier published method. The approach was applied to the analysis of beer and wine.

Comparison of high-temperature gradient heart-cutting and comprehensive LC x LC systems for the separation of phenolic antioxidants

CACCIOLA, FRANCESCO;MONDELLO, Luigi
2007-01-01

Abstract

Natural phenolic antioxidants were separated using comprehensive 2D HPLC on a Purospher Star RP-18e column in the first dimension and on two parallel Zirconia Carbon columns working in alternating cycles in the second dimension. The combination of the two columns provides great differences in separation selectivity in each dimension and an almost orthogonal 2D system. Temperature and solvent gradients were compared for the separation of the first dimension fraction in the stop-flow heart-cutting 2D setup. Temperature gradients provide shorter separation times in comparison with solvent gradients. However, the time required for post-run column equilibration is too long for comprehensive LCxLC. High-temperature isocratic separation was employed in the second dimension of the comprehensive setup, allowing improvement of the fraction transfer frequency between the two dimensions and shorter 2D separation time in comparison to the earlier published method. The approach was applied to the analysis of beer and wine.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1891163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact