OBJECTIVES: An increased expression of adenine nucleotide translocator (ANT1), found in facioscapulohumeral muscular dystrophy (FSHD), is known to lead to a decrease in nuclear factor-kappaB (NF-kappaB) DNA binding and to sensitize muscle cells to oxidative stress and apoptosis. Receptor for advanced glycation end products (RAGE) mediated by NF-kappaB activation is involved in proinflammatory pathomechanism and in muscle fiber regeneration in inflammatory myopathies and in limb girdle muscular dystrophy. Oxidative stress can stimulate RAGE- NF-kappaB pathway. Our purpose was to verify if oxidative stress may induce RAGE- NF-kappaB pathway activation in FSHD, contributing to the pathogenesis of such a disease. MATERIALS AND METHODS: On muscle samples of eight patients with FSHD, eight patients with Duchenne muscular dystrophy and eight normal controls the following studies were carried out: immunocytochemistry for activated NF-kappaB; electrophoretic mobility shift assay of NF-kappaB DNA binding activity; Western blot studies of RAGE and ANT1; hydrogen peroxide (HP), peroxidase and glutathione peroxidase (GPx) assays. RESULTS: An increased RAGE and ANT1 expression in FSHD with moderate increase of NF-kappaB DNA binding activity was found together with an increased production of HP and a reduced activity of peroxidase and GPx. CONCLUSIONS: Our data confirm that response to oxidative stress and ANT1 increased activity are early events in FSHD muscle. The study also reveals that the RAGE- NF-kappaB pathway, induced by oxidative stress, is activated independently of the presence of a clear histochemical evidence of muscle damage in FSHD.

RAGE-NF-kappa B pathway activation in response to oxidative stress in facioscapulohumeral muscular dystrophy

MACAIONE, Vincenzo;AGUENNOUZ, M'hammed;RODOLICO, Carmelo;MAZZEO, Anna;DI GIORGIO, Rosa Maria;DE LUCA, Grazia;VITA, Giuseppe
2007-01-01

Abstract

OBJECTIVES: An increased expression of adenine nucleotide translocator (ANT1), found in facioscapulohumeral muscular dystrophy (FSHD), is known to lead to a decrease in nuclear factor-kappaB (NF-kappaB) DNA binding and to sensitize muscle cells to oxidative stress and apoptosis. Receptor for advanced glycation end products (RAGE) mediated by NF-kappaB activation is involved in proinflammatory pathomechanism and in muscle fiber regeneration in inflammatory myopathies and in limb girdle muscular dystrophy. Oxidative stress can stimulate RAGE- NF-kappaB pathway. Our purpose was to verify if oxidative stress may induce RAGE- NF-kappaB pathway activation in FSHD, contributing to the pathogenesis of such a disease. MATERIALS AND METHODS: On muscle samples of eight patients with FSHD, eight patients with Duchenne muscular dystrophy and eight normal controls the following studies were carried out: immunocytochemistry for activated NF-kappaB; electrophoretic mobility shift assay of NF-kappaB DNA binding activity; Western blot studies of RAGE and ANT1; hydrogen peroxide (HP), peroxidase and glutathione peroxidase (GPx) assays. RESULTS: An increased RAGE and ANT1 expression in FSHD with moderate increase of NF-kappaB DNA binding activity was found together with an increased production of HP and a reduced activity of peroxidase and GPx. CONCLUSIONS: Our data confirm that response to oxidative stress and ANT1 increased activity are early events in FSHD muscle. The study also reveals that the RAGE- NF-kappaB pathway, induced by oxidative stress, is activated independently of the presence of a clear histochemical evidence of muscle damage in FSHD.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1891754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
social impact