Starch is affected by several limitations, e.g., retro-gradation, high viscosity even at low concentrations, handling issues, poor freeze–thaw stability, low process tolerance, and gel opacity. In this context, physical, chemical, and enzymatic methods have been investigated for addressing such limitations or adding new attributes. Thus, the creation of biomaterial-based nanoparticles has sparked curiosity. Because of that, single nucleotide polymorphisms are gaining a lot of interest in food packaging technology. This is due to their ability to increase the mechanical and water vapor resistance of the matrix, as well as hide its re-crystallization during storage in high-humidity atmospheres and enhance the mechanical properties of films when binding in paper machines and paper coating. In medicine, single nucleotide polymorphisms (SNPs) are suitable as carriers in the field of drug delivery for immobilized bioactive or therapeutic agents, as well as wastewater treatments as an alternative to expensive activated carbons. Starch nanoparticle preparations can be performed by hydrolysis via acid hydrolysis of the amorphous part of a starch molecule, the use of enzymes such as pullulanase or isoamylase, or a combination of two regeneration and mechanical treatments with the employment of extrusion, irradiation, ultrasound, or precipitation. The possibility of obtaining cheap and easy-to-use methods for starch and starch derivative nanoparticles is of fundamental importance. Nano-precipitation and ultra-sonication are rather simple and reliable methods for nanoparticle production. The process involves the addition of a diluted starch solution into a non-solvent, and ultra-sonication aims to reduce the size by breaking the covalent bonds in polymeric material due to intense shear forces or mechanical effects associated with the collapsing of micro-bubbles by sound waves. The current study focuses on starch nanoparticle manufacturing, characterization, and emerging applications.

Recent Trends in the Preparation of Nano-Starch Particles

Cacciola F.
;
Haoujar I.;
2022-01-01

Abstract

Starch is affected by several limitations, e.g., retro-gradation, high viscosity even at low concentrations, handling issues, poor freeze–thaw stability, low process tolerance, and gel opacity. In this context, physical, chemical, and enzymatic methods have been investigated for addressing such limitations or adding new attributes. Thus, the creation of biomaterial-based nanoparticles has sparked curiosity. Because of that, single nucleotide polymorphisms are gaining a lot of interest in food packaging technology. This is due to their ability to increase the mechanical and water vapor resistance of the matrix, as well as hide its re-crystallization during storage in high-humidity atmospheres and enhance the mechanical properties of films when binding in paper machines and paper coating. In medicine, single nucleotide polymorphisms (SNPs) are suitable as carriers in the field of drug delivery for immobilized bioactive or therapeutic agents, as well as wastewater treatments as an alternative to expensive activated carbons. Starch nanoparticle preparations can be performed by hydrolysis via acid hydrolysis of the amorphous part of a starch molecule, the use of enzymes such as pullulanase or isoamylase, or a combination of two regeneration and mechanical treatments with the employment of extrusion, irradiation, ultrasound, or precipitation. The possibility of obtaining cheap and easy-to-use methods for starch and starch derivative nanoparticles is of fundamental importance. Nano-precipitation and ultra-sonication are rather simple and reliable methods for nanoparticle production. The process involves the addition of a diluted starch solution into a non-solvent, and ultra-sonication aims to reduce the size by breaking the covalent bonds in polymeric material due to intense shear forces or mechanical effects associated with the collapsing of micro-bubbles by sound waves. The current study focuses on starch nanoparticle manufacturing, characterization, and emerging applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3242737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact