Background: This work aimed to perform a comprehensive investigation of organic Moroccan honeys obtained from plants of euphorbia, arbutus, and carob, based on the determination of physico-chemical profiles and volatile fingerprints. Methods: The selected analytical approach involved different techniques, including physico-chemical procedures for determination of humidity, acidity, diastase activity; solid-phase microextraction (SPME) coupled to GC-MS for aromatic fraction exploration; and ICP-MS for multi-element analysis. Results: The results obtained from the physicochemical analyses were highly comparable to those of other commercial honeys. In 50% of samples investigated, the diastase number was just above the legal limit fixed by Honey Quality Standards. The analysis of the volatile fraction highlighted the presence of numerous compounds from the terpenoid group along with characteristic molecules such as furfural, isophorone, and derivatives. In most cases, VOCs were distinct markers of origin; in others, it was not possible to assess an exclusive source for bees to produce honey. Conclusion: The results contributed to place the three varieties of honey investigated among the commercial products available in the market. Many variables determined returned positive indications about quality and safety of these special honeys.
A Preliminary Investigation of Special Types of Honey Marketed in Morocco
Mehdi, RaniaPrimo
Formal Analysis
;Vadala Rossella
Data Curation
;Nava, VincenzoFormal Analysis
;Condurso, ConcettaMethodology
;Cicero, NicolaPenultimo
Funding Acquisition
;Costa, Rosaria
Ultimo
Writing – Review & Editing
2023-01-01
Abstract
Background: This work aimed to perform a comprehensive investigation of organic Moroccan honeys obtained from plants of euphorbia, arbutus, and carob, based on the determination of physico-chemical profiles and volatile fingerprints. Methods: The selected analytical approach involved different techniques, including physico-chemical procedures for determination of humidity, acidity, diastase activity; solid-phase microextraction (SPME) coupled to GC-MS for aromatic fraction exploration; and ICP-MS for multi-element analysis. Results: The results obtained from the physicochemical analyses were highly comparable to those of other commercial honeys. In 50% of samples investigated, the diastase number was just above the legal limit fixed by Honey Quality Standards. The analysis of the volatile fraction highlighted the presence of numerous compounds from the terpenoid group along with characteristic molecules such as furfural, isophorone, and derivatives. In most cases, VOCs were distinct markers of origin; in others, it was not possible to assess an exclusive source for bees to produce honey. Conclusion: The results contributed to place the three varieties of honey investigated among the commercial products available in the market. Many variables determined returned positive indications about quality and safety of these special honeys.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.