Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.
Quantitative detection of viable but nonculturable vibrio parahaemolyticus in frozen bivalve molluscs
Di Salvo, EleonoraPrimo
;Panebianco, AntonioPenultimo
;Ziino, GraziellaUltimo
2023-01-01
Abstract
Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.File | Dimensione | Formato | |
---|---|---|---|
foods-12-02373 (1).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
546.42 kB
Formato
Adobe PDF
|
546.42 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.