Unlike the synthetic surfactants, mono- and diacylglycerols have the advantage to be biodegradable and non-toxic. In the present work, the hydrolysis of lipid fraction by-products of refined vegetable oils was performed by Serratia sp. W3 lipase immobilized on CaCO3 by combined adsorption and precipitation. This support was selected out of four carriers as it exhibited the finest activity support (950 U/g) and the most satisfactory behavior at use. The immobilized preparation with CaCO3 was stable and active in the whole range of pH (4 to 9) and temperature (37 to 55◦C), yielding a 75% degree of hydrolysis at optimal environmental conditions of pH 8.5 and temperature 55◦C. Thin-layer chromatography, gas chromatography, and liquid chromatography methods were evaluated to determine the analytical characterization of hydrolysis products. For monoacylglycerols and diacylglycerol fractions identified in the samples, a novel approach by liquid chromatography method was employed, through a homemade linear retention index database and a dedicated software. The adopted approach allowed the use of basic instrumentation set-ups, without the need of sophisticated detectors, such as mass spectrometers. Thus, it could be an effective alternative to produce emulsifiers from cheap vegetable oils.

Monoacylglycerol and diacylglycerol production by hydrolysis of refined vegetable oil by-products using an immobilized lipase from Serratia sp. W3

Rigano, Francesca;Micalizzi, Giuseppe;Mondello, Luigi;Cacciola, Francesco
2018-01-01

Abstract

Unlike the synthetic surfactants, mono- and diacylglycerols have the advantage to be biodegradable and non-toxic. In the present work, the hydrolysis of lipid fraction by-products of refined vegetable oils was performed by Serratia sp. W3 lipase immobilized on CaCO3 by combined adsorption and precipitation. This support was selected out of four carriers as it exhibited the finest activity support (950 U/g) and the most satisfactory behavior at use. The immobilized preparation with CaCO3 was stable and active in the whole range of pH (4 to 9) and temperature (37 to 55◦C), yielding a 75% degree of hydrolysis at optimal environmental conditions of pH 8.5 and temperature 55◦C. Thin-layer chromatography, gas chromatography, and liquid chromatography methods were evaluated to determine the analytical characterization of hydrolysis products. For monoacylglycerols and diacylglycerol fractions identified in the samples, a novel approach by liquid chromatography method was employed, through a homemade linear retention index database and a dedicated software. The adopted approach allowed the use of basic instrumentation set-ups, without the need of sophisticated detectors, such as mass spectrometers. Thus, it could be an effective alternative to produce emulsifiers from cheap vegetable oils.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3132426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact