A rapid and practicable analytical method for the measurement of short-chain fatty acids (SCFAs) in human plasma was developed. The extraction procedure involved the use of acidified water and methyl tert-butyl ether (MTBE), while the separation and detection of SCFAs, including acetic, propionic, and butyric acids was carried out by using gas chromatography-mass spectrometry (GC–MS) technique. The novelty of the research involves reducing the analysis time (less than 7 min) by using the novel fast GC–MS method. A narrow-bore GC capillary column of dimensions 30 m × 0.25 mm ID × 0.25 μm df with acid-modified poly(ethylene glycol) stationary phase was employed for the chromatographic separation. The signals of target compounds were acquired in selected ion monitoring (SIM) mode monitoring a quantifier ion (Q) and two qualifier ions (q1 and q2). Linearity of the method, limits of detection (LoD) and quantification (LoQ) were evaluated. In detail, regression coefficients of the calibration curves were between 0.9960 and 0.9933; LoDs ranged from 0.02 μM to 0.03 μM, while LoQs from 0.06 μM to 0.10 μM.
Measurement of short-chain fatty acids in human plasma by means of fast gas chromatography-mass spectrometry
Micalizzi G.;Buzzanca C.;Chiaia V.;Cacciola F.
;Caccamo D.;Mondello L.
2024-01-01
Abstract
A rapid and practicable analytical method for the measurement of short-chain fatty acids (SCFAs) in human plasma was developed. The extraction procedure involved the use of acidified water and methyl tert-butyl ether (MTBE), while the separation and detection of SCFAs, including acetic, propionic, and butyric acids was carried out by using gas chromatography-mass spectrometry (GC–MS) technique. The novelty of the research involves reducing the analysis time (less than 7 min) by using the novel fast GC–MS method. A narrow-bore GC capillary column of dimensions 30 m × 0.25 mm ID × 0.25 μm df with acid-modified poly(ethylene glycol) stationary phase was employed for the chromatographic separation. The signals of target compounds were acquired in selected ion monitoring (SIM) mode monitoring a quantifier ion (Q) and two qualifier ions (q1 and q2). Linearity of the method, limits of detection (LoD) and quantification (LoQ) were evaluated. In detail, regression coefficients of the calibration curves were between 0.9960 and 0.9933; LoDs ranged from 0.02 μM to 0.03 μM, while LoQs from 0.06 μM to 0.10 μM.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.